Information presse : Une thérapie génique à l’étude contre la maladie de Steinert
La dystrophie myotonique de type 1 (DM1) ou maladie de Steinert est une maladie neuromusculaire génétique rare et invalidante, qui touche de nombreux organes et dont l’issue est fatale. Aucun traitement n’est disponible à ce jour pour les malades. Forts de précédentes recherches sur les causes moléculaires de la maladie, des chercheurs et chercheuses de l’Inserm, du CNRS, de Sorbonne Université, du CHU Lille et de l’Université de Lille, en partenariat avec l’Institut de myologie, au sein du Centre de recherche en myologie et du centre Lille neuroscience & cognition, ont développé et testé une thérapie génique prometteuse qui agit directement sur l’origine de la maladie. Les premiers résultats publiés dans Nature Biomedical Engineering montrent, chez la souris, une correction des altérations moléculaires et physiologiques du muscle squelettique .
La dystrophie myotonique de type 1 (DM1) ou maladie de Steinert est une maladie neuromusculaire génétique et héréditaire rare qui touche environ 1 personne sur 8 000. Invalidante et mortelle, cette affection est dite « multisystémique » car, elle touche à la fois les muscles (affaiblissement et atrophie des muscles appelés « dystrophie », défaut de relaxation musculaire appelé « myotonie »), mais aussi d’autres organes (appareil cardiorespiratoire, système digestif, système nerveux…). Elle s’exprime et évolue très différemment d’un malade à l’autre et n’a pour l’heure pas de traitement.
Elle est due à une répétition anormale d’une petite séquence d’ADN (triplet CTG ) au niveau du gène DMPK (Dystrophie Myotonine Protéine Kinase) situé sur le chromosome 19. Chez un individu sain, cette séquence est présente mais répétée 5 à 37 fois. En revanche, chez les patients atteints de DM1, on observe une mutation qui se traduit par une augmentation du nombre de triplets, pouvant atteindre plusieurs milliers de répétitions.
À propos des mécanismes permettant l’expression des gènes
Pour conduire à la production d’une protéine, un gène (localisé dans le noyau de la cellule) est d’abord transcrit en une molécule d’ARN. Pour devenir un ARN messager (ARNm), il va subir une maturation, passant notamment par un épissage : schématiquement, la molécule est coupée en morceaux dont certains sont éliminés et d’autres joints. Grâce à ce processus finement régulé, un seul gène peut conduire à la synthèse de différents ARNm, et donc de différentes protéines. Après l’épissage, l’ARNm mature sera finalement traduit en protéine, à l’extérieur du noyau cellulaire.
Dans la maladie de Steinert, le gène muté est transcrit mais les ARNm mutants sont retenus dans le noyau des cellules sous forme d’agrégats caractéristiques. En effet, dans les cellules des personnes atteintes de DM1, les protéines MBNL1 qui se lient normalement à certains ARN pour réguler leur épissage et leur maturation, sont « capturées » par les ARN porteurs de la mutation. Ainsi séquestrées dans les agrégats, il leur est impossible d’exercer leurs fonctions, ce qui entraîne la production de protéines non, ou moins, fonctionnelles, dont certaines ont été associées à des symptômes cliniques.
L’équipe dirigée par Denis Furling, directeur de recherche CNRS, au sein du Centre de recherche en myologie (Inserm/Sorbonne université/Institut de myologie), en association avec celle de Nicolas Sergeant, directeur de recherche Inserm du centre Lille neuroscience & cognition (Inserm/Université de Lille/CHU Lille), s’est intéressée à une stratégie thérapeutique visant à restaurer l’activité initiale de MBNL1 dans les cellules musculaires squelettiques exprimant la mutation responsable de la maladie de Steinert.
Pour cela, les scientifiques ont conçu par ingénierie des protéines modifiées présentant, comme la protéine MBNL1, des caractéristiques de liaison aux ARN porteurs de la mutation et agissant par conséquent comme un leurre pour ces ARN. Ils ont observé en exprimant ces protéines leurres in vitro dans des cellules musculaires issues de patients atteint de DM1, qu’elles étaient capturées par les ARN mutés en lieu et place des protéines MBNL1. Ces dernières, étaient alors libérées des agrégats d’ARN mutés et retrouvaient leur fonction normale. Ainsi, les erreurs d’épissage présentes initialement dans ces cellules disparaissaient. Enfin, l’ARN muté lié aux protéines leurres s’avérait moins stable et pouvait être plus facilement et efficacement éliminé par la cellule.